NUMERO PI:
Le rodean muchos misterios, a pesar de ser una constante natural. Aparece en los lugares más inesperados: la probabilidad de que dos enteros positivos cualesquiera sean primos entre sí es 6/pi^2.
Augustus de Morgan escribió "... este misterioso 3.14159... que se cuela por todas las puertas y ventanas, que se desliza por cualquier chimenea". Bertrand Russell escribió un cuento corto titulado La pesadilla del matemático, en el que escribe "El rostro de (pi) estaba enmascarado; se sobreentendía que nadie podía contemplarlo y continuar con vida. Pero unos ojos de penetrante mirada acechaban tras la máscara, inexorables, fríos y enigmáticos...".
Las primeras civilizaciones indoeuropeas ya tenían conciencia de que el área del círculo es proporcional al cuadrado de su radio, y de que su circunferencia lo es al diámetro. Sin embargo no se sabe cuándo se comprendió por vez primera que ambas razones son la misma constante, simbolizada en nuestros días por la letra griega pi (El símbolo del que toma nombre la constante lo introdujo en 1706 el escritor y matemático inglés William Jones y lo popularizó el matemático suizo Leonhard Euler (v.) en el siglo XVIII.) Arquímedes de Siracusa (v.), el mayor matemático de la antigüedad, estableció rigurosamente la equivalencia de ambas razones en su tratado Medición de un circulo. Usando polígonos de 96 lados inscritos (idea de Antífono) y circunscritos (idea de Brisón de Heraclea) (¡y sin conocer las funciones trigonométricas!), llegó a que 310/71<pi<310/70 y dedujo un laborioso procedimiento para calcular (pi) con cualquier precisión.
En el s. V, el astrónomo chino Tsu Ch'ung-Chih descubrió que pi=355/113 (aproximadamente)
Todos los intentos de calcular el número (pi) realizados en Europa hasta mediados del siglo XVII se fundaron de un modo u otro en el método de Arquímedes. Ludolph van Ceulen, matemático holandés del siglo XVI, dedicó gran parte de su carrera al cálculo de (pi). Casi al final de su vida obtuvo una aproximación de 32 cifras calculando el perímetro de polígonos inscritos y circunscritos de 262 (unos 1018) lados. Se dice que el valor de (pi) que obtuvo así, denominado número ludolfiano en ciertas regiones de Europa, fue su epitafio.
Le rodean muchos misterios, a pesar de ser una constante natural. Aparece en los lugares más inesperados: la probabilidad de que dos enteros positivos cualesquiera sean primos entre sí es 6/pi^2.
Augustus de Morgan escribió "... este misterioso 3.14159... que se cuela por todas las puertas y ventanas, que se desliza por cualquier chimenea". Bertrand Russell escribió un cuento corto titulado La pesadilla del matemático, en el que escribe "El rostro de (pi) estaba enmascarado; se sobreentendía que nadie podía contemplarlo y continuar con vida. Pero unos ojos de penetrante mirada acechaban tras la máscara, inexorables, fríos y enigmáticos...".
Las primeras civilizaciones indoeuropeas ya tenían conciencia de que el área del círculo es proporcional al cuadrado de su radio, y de que su circunferencia lo es al diámetro. Sin embargo no se sabe cuándo se comprendió por vez primera que ambas razones son la misma constante, simbolizada en nuestros días por la letra griega pi (El símbolo del que toma nombre la constante lo introdujo en 1706 el escritor y matemático inglés William Jones y lo popularizó el matemático suizo Leonhard Euler (v.) en el siglo XVIII.) Arquímedes de Siracusa (v.), el mayor matemático de la antigüedad, estableció rigurosamente la equivalencia de ambas razones en su tratado Medición de un circulo. Usando polígonos de 96 lados inscritos (idea de Antífono) y circunscritos (idea de Brisón de Heraclea) (¡y sin conocer las funciones trigonométricas!), llegó a que 310/71<pi<310/70 y dedujo un laborioso procedimiento para calcular (pi) con cualquier precisión.
En el s. V, el astrónomo chino Tsu Ch'ung-Chih descubrió que pi=355/113 (aproximadamente)
Todos los intentos de calcular el número (pi) realizados en Europa hasta mediados del siglo XVII se fundaron de un modo u otro en el método de Arquímedes. Ludolph van Ceulen, matemático holandés del siglo XVI, dedicó gran parte de su carrera al cálculo de (pi). Casi al final de su vida obtuvo una aproximación de 32 cifras calculando el perímetro de polígonos inscritos y circunscritos de 262 (unos 1018) lados. Se dice que el valor de (pi) que obtuvo así, denominado número ludolfiano en ciertas regiones de Europa, fue su epitafio.