FERMAT PIERRE
Pierre de Fermat (1601-1665), francés, fundador de la teoría de los números. No era matemático sino jurista, y sus trabajos matemáticos no se publicaron hasta después de su muerte. Escribió numerosas notas al margen de su ejemplar de la Aritmética de Diofanto. Una de ellas ha llegado a ser uno de los más famosos enunciados en la historia de las matemáticas, el Último teorema de Fermat. Al lado de un problema sobre ternas pitagóricos, escribió en latín: "Por otra parte, es imposible que un cubo sea suma de otros dos cubos, una cuarta potencia, suma de dos cuartas potencias, o en general, que ningún número que sea potencia mayor que la segunda pueda ser suma de dos potencias semejantes. He descubierto una demostración verdaderamente maravillosa de esta proposición que este margen es demasiado estrecho para contener." Un jurista provinciano del s. XVII ha burlado con su teorema a los más capaces matemáticos de tres siglos. Se sospecha que estaba equivocado y carecía de tal demostración. Cien años más tarde Euler (v.) publicó una demostración ¡errónea! Para n=3. En 1825, Dirichlet y Legendre lo hicieron para n=5, y en 1840 Gabriel Lamé lo hizo, no sin gran dificultad, para n=7. En 1847 Kummer logró establecerlo para todo n primo <100 salvo, quizá, para 37, 59 y 67. Mediante ordenador se demostró en 1970 para n hasta 30.000 y poco después hasta 125.000. En 1854 la Academia de Ciencias de París había hecho la promesa de otorgar una medalla y 300.000 francos de oro a quien lograra demostrar el teorema. Kummer recibió la medalla en 1858. La historia tiene su final con Willes (v.), quien ha logrado, no sin tropiezos, dejarlo definitivamente establecido
Andrew Willes, británico, demostró en una maratoniana conferencia (21 al 23 de junio de 1993) el último teorema de Fermat (v.) causando un gran revuelo que llegó a los noticiarios de todo el mundo. Presentó un manuscrito de 200 páginas a Inventiones Mathematicae y el editor lo envió a seis recensores. Willes respondió de inmediato a todas sus objeciones, salvo una, por causa de la cual en diciembre de 1993 se retiró de la circulación y en junio de 1995, tras siete meses de minuciosa comprobación, se publicó la prueba definitiva, que ocupa un número completo de Annals of Mathematics.
Pierre de Fermat (1601-1665), francés, fundador de la teoría de los números. No era matemático sino jurista, y sus trabajos matemáticos no se publicaron hasta después de su muerte. Escribió numerosas notas al margen de su ejemplar de la Aritmética de Diofanto. Una de ellas ha llegado a ser uno de los más famosos enunciados en la historia de las matemáticas, el Último teorema de Fermat. Al lado de un problema sobre ternas pitagóricos, escribió en latín: "Por otra parte, es imposible que un cubo sea suma de otros dos cubos, una cuarta potencia, suma de dos cuartas potencias, o en general, que ningún número que sea potencia mayor que la segunda pueda ser suma de dos potencias semejantes. He descubierto una demostración verdaderamente maravillosa de esta proposición que este margen es demasiado estrecho para contener." Un jurista provinciano del s. XVII ha burlado con su teorema a los más capaces matemáticos de tres siglos. Se sospecha que estaba equivocado y carecía de tal demostración. Cien años más tarde Euler (v.) publicó una demostración ¡errónea! Para n=3. En 1825, Dirichlet y Legendre lo hicieron para n=5, y en 1840 Gabriel Lamé lo hizo, no sin gran dificultad, para n=7. En 1847 Kummer logró establecerlo para todo n primo <100 salvo, quizá, para 37, 59 y 67. Mediante ordenador se demostró en 1970 para n hasta 30.000 y poco después hasta 125.000. En 1854 la Academia de Ciencias de París había hecho la promesa de otorgar una medalla y 300.000 francos de oro a quien lograra demostrar el teorema. Kummer recibió la medalla en 1858. La historia tiene su final con Willes (v.), quien ha logrado, no sin tropiezos, dejarlo definitivamente establecido
Andrew Willes, británico, demostró en una maratoniana conferencia (21 al 23 de junio de 1993) el último teorema de Fermat (v.) causando un gran revuelo que llegó a los noticiarios de todo el mundo. Presentó un manuscrito de 200 páginas a Inventiones Mathematicae y el editor lo envió a seis recensores. Willes respondió de inmediato a todas sus objeciones, salvo una, por causa de la cual en diciembre de 1993 se retiró de la circulación y en junio de 1995, tras siete meses de minuciosa comprobación, se publicó la prueba definitiva, que ocupa un número completo de Annals of Mathematics.